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Abstract
A Monte Carlo scheme to sample the screening potential H(r) of Yukawa
plasmas notably at short distances is presented. This scheme is based on
an important sampling technique. Comparisons with earlier results for the
Coulombic one-component plasma are given. Our Monte Carlo simulations
yield an accurate estimate of H(r) as well for short-range and long-range
interparticle distances.

PACS numbers: 52.25.−b, 61.20.−p, 05.20.Gg

1. Introduction

In this work we present a Monte Carlo scheme devised to compute the pair distribution
function g(r) of a strongly coupled plasma, notably at short distances, i.e. for values of r
smaller or of the order of the ionic radius, with a high accuracy. The model considered in
our study is the Yukawa one-component plasma (YOCP), i.e. a system made of N identical
classical ions of charge Ze immersed in a uniform neutralizing background of electrons. The
effective interaction between two ions is supposed to be of the form vα(r) = (Ze)2yα(r),
where yα(r) = exp(−αr)/r (α � 0) is the Yukawa potential and α is the screening parameter.
In the limit α → 0 the YOCP reduces to the well-known Coulombic one-component plasma
(OCP) [1]. The configurational potential energy in a domain � of the ordinary space R

3 can
thus be written as [2]

V�(1, . . . , N) = (Ze)2

2

N∑
i �=j

yα(rij ) + Ze

N∑
i=1

∫
�

d3r ρByα(|r − ri|)

+
1

2

∫
�

d3r d3r′ ρ2
Byα(|r − r′|) + N(Ze)2E (1.1)
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where ρB = −NZe/� is the uniform charge density of the background. The constant E which
appears on the rhs of equation (1.1) fixes the zero of energy and reads

E = 1

2
lim
r→0

[
yα(r) − 1

r

]
= −α

2
. (1.2)

In the thermodynamic limit, the thermodynamic, structural and dynamical properties of the
YOCP depend solely upon two dimensionless parameters, namely, the coupling parameter
� = β(Ze)2/a and the reduced screening parameter α∗ = αa, where β = 1/kBT (kB is the
Boltzmann constant and T is the temperature) and a is the ionic radius (4πρa3/3 = 1, where
ρ = N/� is the number density of particles).

The thermodynamic properties of the YOCP are well known nowadays thanks to extensive
Monte Carlo (MC) simulations performed either within periodical [3] or hyperspherical [2]
boundary conditions. Much less is known about g(r), and the related screening function H(r)

is defined as

g(r) = exp(−�ayα(r) + �H(r)). (1.3)

H(r) plays an important role in estimating the enhancement factors for the thermonuclear
reaction rates [4]. As for r → 0, g(r) ∼ exp(−�ayα(r)), the values of g(r) for r → 0 are
extremely small for large �s, which precludes a numerical study by means of standard MC
simulations, and biased MC schemes are therefore unavoidable. Such a scheme is presented
in section 2; it is a synthesis of two biased schemes applied earlier in the determination of the
cavity function of hard spheres [5] on the one hand, and in the calculation of the screening
function H(r) of the OCP on the other hand [6].

The results of MC simulations are reported in section 3 both for the OCP and the YOCP
cases. They must be considered as preliminary results; our ultimate goal is to establish a
complete data on the basis of screening functions H(r) for a wide range of (�, α∗).

2. Sampling the screening function

In the canonical ensemble the pair distribution function g(r) is given by

g(r) = �

〈∫ ∏N
i=1 d�ri δ(�r − �r12) exp(−βV�(1, 2, . . . , N))∫ ∏N

i=1 d�ri exp(−βV�(1, 2, . . . , N))

〉
(2.1)

where the brackets 〈· · ·〉 denote a canonical thermal average and � is the volume. In
equation (2.1) �r12 ≡ �r1 − �r2 and we have implicitly assumed that the system was homogeneous
which is verified if periodical boundary conditions are adopted. In practice, g(r) can be
computed in a standard MC calculation with a good precision only for r > rmin. For instance,
at � ∼ 100 we have typically rmin/a ∼ 1. In order to compute g(r) for r < rmin we follow
the suggestion of Ogata [6] and rewrite equation (2.1) as

g(r12) = �

〈∫ ∏N
i=1 d�ri δ(�r − �r12) exp(−βV�(1, 2, . . . , N) − βw(r12)) exp(βw(r12))∫ ∏N

i=1 d�ri exp(−βV�(1, 2, . . . , N))

〉

∝ gw(r12) exp(+βw(r12)). (2.2)

In (2.2) w(r) is a priori an arbitrary function, and Ogata has shown how to take advantage of
that to devise an efficient MC-biased scheme.

The function gw supports the following simple physical interpretation. Let us consider a
mixture made of (N − 2) Yukawa charges and two test particles labelled (1, 2). These two
particles interact with the (N − 2) other ions via Yukawa potentials, but their mutual potential
energy is defined as w(r12) + vα(r12). For practical purposes, it is clearly wise to choose
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Figure 1. The bias function H̄ (r) (top curve, solid line) used at � = 40, α∗ = 1 to determine the
function gw(r) (bottom curve). The error bars on gw(r) correspond to two standard deviations.

βw(r) = −�ayα(r) + �H̄ (r), where H̄ (r) is a good estimate of the true screening function
H(r). Indeed, it follows from equation (1.3) and (2.2) that gw(r) ∝ exp(�[H(r) − H̄ (r)]).
As a consequence, if H ∼ H̄ , then gw(r) is practically constant and, therefore, easy to
determine numerically. However, we are only half the way since gw(r) is known only up to
a multiplicative constant. This normalization constant can be re-expressed, as discussed by
Ogata [6], as a difference of free energies which can be determined in the course of a MC
run as thermal averages. However, in the MC simulations by this author, the variance on
these averages turns out to be quite large which precludes an accurate estimate. Therefore,
we adopted the method that Patey and Torrie devised for computing the cavity function
of hard spheres [5]. Suppose that gw(r) has been computed by a MC simulation of the
mixture described above for, let us say, 0 < r/a < 2. In practice, it can be achieved by
the choice βw(r) = −�ayα(r) + �H̄ (r) for 0 < r/a < 2 and βw(r) = ∞ for r/a > 2.
Then an unnormalized pair distribution gu(r) = gw(r) exp(βw(r)) can be computed in the
range 0 < r/a < 2 and compared to the normalized g0(r) obtained by a standard MC
simulation. This comparison in the range of distances where both g0(r) and gu(r) can be
determined precisely (i.e. rmin/a < r/a < 2) yields an accurate determination of the required
normalization constant. Therefore, both g(r) and H(r) can be computed accurately for all r.

3. Monte Carlo simulations

The scenario of section 2 was scrupulously applied in our MC simulations which were
performed within hyperspherical boundary conditions [2]. For each pair of (�, α∗) a standard
and a biased MC simulation were performed. The runs were divided typically into ∼20 subruns
in order to compute the statistical errors by a method of blocks [7]. In the preliminary data
reported here considered systems involved N = 500 particles, but a systematic study of finite
size effects is under way.
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Figure 2. Logarithm of the ratio K(r) of the normalized g0(r) (standard MC calculation) and the
unnormalized gu(r) (biased MC calculation) in the range rmin < r < 2a at � = 40, α∗ = 1.
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Figure 3. The screening function H(r) at � = 40, α∗ = 1 for a sample of N = 500 particles.
The standard MC calculation allows only the determination of H(r) in the range rmin < r < 2a

(curve on the right). The biased MC gives the curve in the range r < 2a. In the overlapping region
the agreement between these two estimates is satisfactory. The solid curve is a sixth-order even
polynomial of the MC data.

In the case of the OCP we chose for H̄(r) the fit of H(r) provided by Ogata [6]. However, a
small attractive potential δH̄ (r) was added to H̄ (r) at short distances to enhance the sampling
of gw(r) at small r. The form of δH̄ (r) is of course irrelevant; we retained a quadratic
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Figure 4. The screening function H(r) for the OCP at � = 40. Top curve: Ogata result. Bottom
curves: MC data for a sample of N = 500 ions (standard and biased simulations). The solid curve
is a sixth-order even polynomial of the MC data.
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Figure 5. The screening function H(r) for the OCP. From bottom to top � = 1, 2, 10 and 100.

expression for convenience. In the case of the YOCP the bias function H̄ (r) at �, α∗ + δα∗

was chosen equal to the screening function H(r) obtained for the point (�, α∗).
To illustrate the method, we display in figure 1 a plot of the bias function H̄ (r) and of the

unnormalized gw(r) at � = 40, α∗ = 1. As a result of the structure of the bias function H̄ (r)

at short distance, gw(r) exhibits a quite pronounced peak in this region. We show in figure 2
the logarithm of the ratio K(r) of the unnormalized gu(r) and the properly normalized g0(r)
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Figure 6. The screening function H(r) for the YOCP at � = 40 and some values of α∗. From top
to bottom α∗ = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 2 and 3.

at the same point (� = 40, α∗ = 1). As can be seen in the figure the normalization constant
of gu(r) can be obtained with a good accuracy by averaging K(r) for 1 < r/a < 2. The
resulting function H(r) is displayed in figure 3 for r varying in the range 0 < r/a < 2. Note
that in the region rmin < r/a < 2, where H(r) can be computed by a standard MC simulation,
it coincides almost perfectly with the H(r) computed by the biased scheme. In all cases the
screening function can be accurately fitted by the simple polynomiala0 + a2(r/a)2 + a4(r/a)4+
a6(r/a)6 which traverses all the error bars.

In the case of the OCP, the theoretical value a2 = −1/4 [8–10] is roughly recovered
although its numerical value seems to depend strongly upon the number of particles. For
instance, at � = 40 one finds a2 = −0.234,−0.239,−0.249 and −0.250 for the samples
of, respectively, N = 500, 1000, 2000 and 3000 particles. A more systematic study of these
finite volume effects will be presented elsewhere. In the case of the OCP, our results for H(r)

differ by a small but significant amount from those of Ogata (see figure 4), but we have no
firm conclusion concerning these discrepancies. A bunch of H(r) for various � is displayed
in figure 5.

In the case of the YOCP the amplitude of the function H(r) at a given � decreases
steadily as α increases as can be seen in figure 6, but the shape of the curves at short distances
remains unchanged. A sixth-order even polynomial perfectly fits the numerical data in the
range 0 < r/a < 2. A test of some theoretical predictions by Rosenfeld and Chabrier [11]
concerning H(r) at small α is planned for future work.
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